Organogels with Fe(III) complexes of phosphorus-containing amphiphiles as two-component isothermal gelators.
نویسندگان
چکیده
The properties of thermally reversible organogels in which the gelators consist of a phosphonic acid monoester, phosphonic acid, or phosphoric acid monoester and a ferric salt are probed by IR and NMR spectroscopies, optical microscopy, X-ray diffraction, rheology, and light and small-angle neutron scattering (SANS) techniques. This is one of a small number of two-component molecular gelator systems in which gelation can be induced isothermally. The data indicate that complexation between the phosphonate moieties and Fe(III) is accompanied by their in situ polymerization to form self-assembled fibrillar networks that encapsulate and immobilize macroscopically the organic liquid component. From SANS measurements, the cross-sectional radii of the cyclindrical fibers are ca. 15 A. The efficiencies of the gelators (based on the diversity of the liquids gelated, the minimum concentration of gelator required to make a gel at room temperature, and the temporal and thermal stabilities of the gels) have been determined. With a common ferric salt and liquid component, phosphonic acid monoesters are generally more efficient than phosphinic acids or phosphoric acid esters. Of the phosphonic acid monoesters, monophosphonates are better gelator components than bisphosphonates, and introduction of an omega-hydroxy group on the alkyl chain directly attached to phosphorus reduces significantly gelation ability. Several of the gels are stable for very long periods at room temperature. When heated, they revert to sols over wide temperature ranges. The structures of the gelator complexes and the mechanism of their formation and transformation to gels in selected liquids are examined as well.
منابع مشابه
MPTTF-containing tripeptide-based organogels: receptor for 2,4,6-trinitrophenol and multiple stimuli-responsive properties.
A series of monopyrrolotetrathiafulvalene-tripeptide conjugates have been synthesized and investigated as new low-molecular mass organogelators. It was found that most of these compounds could immobilize low-polarity solvents readily and the gelation behaviors of these gelators showed a dependence on the amino acid residues. These organogels were thoroughly studied using various techniques incl...
متن کاملAnti-tumor activity of Fe (III), Co(II) and Pd(II) complexes of N3-{phenyl [(4-pyridylcarbonyl)amino]methyl}
An anti-tumor compound as N3-{phenyl [(4-pyridylcarbonyl) amino] methyl} weresynthesized and identified (NPPA). Fe (III), Co(II) and Pd(II) metal complexes of this ligand preparedby reaction of chloride salt of Fe (III), Co(II) and Pd(II) with NPPA in dry acetonitrile. Identification andCharacterization of the ligand was performed by FT-IR, 1H-NMR spectroscopy and elemental an...
متن کاملAnion response of organogels: dependence on intermolecular interactions between gelators.
Being different from common sensing molecules existing as monomer in solution, the gelators as sensing molecules self-assembled together in gels. Therefore, the interaction strength between gelators is believed as an important factor for gels to recognize selectively anions. In this paper, we choose two gelators, presenting similar binding sites for anions, but different strengths in intermolec...
متن کاملDifferences between β-Ala and Gly-Gly in the design of amino acids-based hydrogels
Despite the continuous interest in organogels and hydrogels of low molecular weight gelators (LMWG), establishing the relationship between the molecular structure and the gelation mechanism is still a challenge. In this paper our interest focuses on the consequences of slight molecular modifications on the self-assembling behaviour of β-Ala vs Gly-Gly-based hydrogelators. Previously, in our gro...
متن کاملSpacer effect on nanostructures and self-assembly in organogels via some bolaform cholesteryl imide derivatives with different spacers
In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized. Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing the flexible/rigid segments in spacers and organic solvents...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2006